
Senior Design Server/Client
Development for Project Matching
[Phase 3]

Design Document
Team 02

Clients Jacob Grundmeier and Akhilesh Tyagi
Advisor Akhilesh Tyagi

Database Design Noah Nelson

Frontend Design Joshua Izumba
Noah Nelson
Evan Brummer

Algorithm Design Robert Holeman
Devin Tigges
Max Kueller

Email sdmay24-02@iastate.edu
Website sdmay24-02.sd.ece.iastate.edu

mailto:sdmay24-02@iastate.edu
https://sdmay24-02.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used

● React functional programming and component design.

● Basic branching and merging standards for Git.

● Agile software development practices.

● Weekly stand-up meetings to discuss progress and identify blockers.

Summary of Requirements

● The matching algorithm must produce an accurate matching based on several factors,

including student preferences, client’s desired majors and number of team members.

● Frontend web UI must be user friendly, intuitive, and easy to use.

● Backend must be able to authenticate the user and correctly respond to requests.

Applicable Courses from Iowa State University Curriculum

● COM S 311 — Introduction to the Design and Analysis of Algorithms.

● COM S 319 — Construction of User Interfaces.

● COM S 309 — Software Development Practices.

● S E 317 — Intro to Software Testing.

New Skills/Knowledge acquired that wasn't taught in courses

● React framework functional programming and component design.

● React Router-Dom navigation.

● Laravel Eloquent database interaction.

https://react.dev/learn/thinking-in-react
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://agilemanifesto.org/iso/en/principles.html
https://www.atlassian.com/agile/scrum/standups

Table of Contents
1 Team

1.1 Team Members
1.2 Required Skill Sets for Your Project
1.3 Skill Sets covered by the Team
1.4 Project Management Style Adopted by the team
1.5 Initial Project Management Roles
1.6 Problem Statement
1.7 Requirements & Constraints
1.8 Engineering Standards
1.9 Intended Users and Uses

2 Project Plan
2.1 Task Decomposition
2.2 Project Management/Tracking Procedures
2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
2.4 Project Timeline/Schedule
2.5 Risks And Risk Management/Mitigation
2.6 Personnel Effort Requirements
2.7 Other Resource Requirements

4 Design
4.1 Design Content
4.2 Design Complexity
4.3 Modern Engineering Tools
4.4 Design Content
4.5 Prior Work/Solutions
4.6 Design Decisions
4.7 Proposed Design

4.7.1 Design 0 (Initial Design)
4.7.2 Design 1 (Design Iteration)

4.8 Technology Considerations
4.9 Design Analysis

5 Testing
5.1 Unit Testing
5.2 Interface Testing

5.3 Integration Testing
5.4 System Testing
5.5 Regression Testing
5.6 Acceptance Testing

6 Implementation
7 Professionalism

7.1 Areas of Responsibility
7.2 Project Specific Professional Responsibility Areas
7.3 Most Applicable Professional Responsibility Area

8 Closing Material
8.1 Discussion
8.2 Conclusion
8.3 References
8.4 Appendices

8.4.1 Team Contract

1 Team
1.1 Team Members

Devin Tigges Evan Brummer Joshua Izumba
Max Kueller Noah Nelson Robert Holeman

1.2 Required Skill Sets for Your Project
● Frontend development.
● Backend development.
● Database development.
● CI/CD knowledge.
● Project management skills.

● Client interaction skills.
● Teamwork skills.
● Agile experience.
● Functional/performance Testing.

1.3 Skill Sets covered by the Team
Frontend Development
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer, Robert Holeman.

Backend Development
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Robert Holeman.

Database Development
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer, Robert Holeman.

CICD Knowledge
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer, Robert Holeman.

Project Management Skills
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer, Robert Holeman.

Client Interaction Skills
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer.

Teamwork Skills
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer.

Agile Experience
Max Kueller, Noah Nelson, Joshua Izumba, Devin Tigges, Evan Brummer, Robert Holeman.

1.4 Project Management Style Adopted by the team
Previous phases preferred Agile project management because it accommodates:

● Short-term deadlines.
● The ability to incorporate changes at any time into the project.
● Take stakeholders' feedback into account throughout the project.
● Potential to overlap work between teammates.

1.5 Initial Project Management Roles
Noah Database Lead
Devin Team Organization
Max Client Interaction, Testing Lead
Joshua Testing, Quality Assurance
Evan UI/UX Lead
Robert Architecture design

1.6 Problem Statement
The goal of this project is to create a program that assists the Senior Design administrators in
matching students with relevant project proposals.

This project is currently in Phase-3, meaning significant effort has been exerted in previous
semesters. Our task will be to incorporate this effort and improve it based on our client’s
preferences.

Specifically, the bulk of this project is composed of two parts: the UI and the matching
algorithm. The project also makes use of an SQL database and additional related tools.

1.7 Requirements & Constraints
1) The matching algorithm should more accurately match students to a project based on

their interests and preferences.
2) The web application should have separate functions based on the user type: proposal

submission for clients, proposal selection for students, and proposal approval and
assignment for administrators.

3) Should be ready to use in Fall of 2024.
4) The system should handle a minimum of 100 concurrent users without a significant

increase in response time.
5) UI should be expanded to allow Clients and Professors to enter projects.
6) After project matching occurs, the mass emailing process should be automated.
7) The database’s design/structure should be improved significantly.
8) The algorithm should be proven to work as expected in testing environments with large

data.

1.8 Engineering Standards
React
Adhere to composition and design principles for the frontend UI.

Laravel
Use PHP for web interactions.

HTTP and HTTPS
Follow HTTP and HTTPS protocols to ensure secure and standardized communication between
the client and server.

Database Management
Follow SQL best practices.

Version Control
Utilize Git and adhere to accepted practices for branching and commit messages.

Security
Develop using security best practices, such as input validation.

Issue Tracking
Keep track of issues and assign tasks ahead of time.

1.9 Intended Users and Uses
This project is intended to benefit the future students and administrators of Iowa State’s Senior
Design class. Automating much of the selection/assignment process will allow for a more
efficient experience for all parties involved. Web forms for clients will ensure consistency
among proposals, concise listings will help students find the projects they’re interested in, and a
dependable matching algorithm will allow administrators to allocate hundreds of students to
their desired projects in minutes.

Industry and ISU professionals will:
● Submit project proposals. ● View the status of their proposal(s).

Students will:
● View available projects.
● Filter projects according to preferred

majors and related keywords.

● Make manual modifications.
● Assess the effectiveness of the

algorithm.

● Input their project preferences.
● Input their preferred teammates.
● Get notified of their assigned project.
● Administrators will.
● Approve proposed projects for selection.
● Run the matching algorithm.

● View statistics measuring the alignment
of project assignments to student
preferences.

● Additional Features.
● Team Communication.
● Generate Team Websites.

2 Project Plan
2.1 Task Decomposition

1. Laravel Backend Development
a. figure out Laravel routing
b. get REST endpoints working
c. test REST endpoints

2. MariaDB Improvement
3. Matching Algorithm Enhancement/Alternative

a. Analyze current algorithm
b. Define success criteria
c. Design new algorithm
d. Implement algorithm
e. Create test environment
f. test

4. Frontend Maintenance
a. Reduce duplicate code between React components
b. Analyze current table text alignment issues
c. Create constant css style for proper table text alignment
d. Add css style to all tables to fix text alignment issues
e. Fix webpage navigation (one dash shown depending on user type)
f. Look into login options

5. Full System Testing
a. Requirements analysis
b. test planning
c. write test cases
d. functional testing
e. usability testing
f. performance testing

6. Client/User Quality Assurance

2.2 Project Management/Tracking Procedures
We plan on using an agile project management style. This will allow us to take an incremental
approach to our project. This approach will allow us to get continuous feedback from
stakeholders throughout the development process. An agile management style will provide the
flexibility to change as our goals or requirements change. Integrated testing throughout the
development process will satisfy our testing goals.

We will use GitLab’s project management features to track our two week sprints. Gitlab provides
a central place for our repository and board to house our stories/work items.

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
● Project matching algorithm matches 95% of students with one of their top three

projects.
● Database is reconfigured to better match requirement specifications.
● Frontend provides different functions for three types of users (students, clients, and

administrators).
● Achieve 95% code coverage for unit testing.
● Deploy web application to live production server by the end of spring.
● Achieve 100% feature coverage.
● Wireframes and/or diagrams completed for new or revised features.
● Deliver final presentation.

2.4 Project Timeline/Schedule

2.5 Risks And Risk Management/Mitigation
Risk 1.
Description:
Algorithm provides
poor matching
Probability: 55%.
Factors increasing
risk: The risk is
increased by our lack
of experience and
thorough testing.
This risk will
decrease as we

Risk 2.
Description: Web
Service fails to
recognize and direct
users to the correct
page for their use
case.
Probability: 15%

Factors
increasing risk: We
will have to get
information about the

Risk 3. Critically Poor
Performance of
matching algorithm

probability
30% It could take a
while
Task can’t be
eliminated

Risk 4. Poor
performance of
Website

Probability 15%
modern web
frameworks help to
guide us and the
webpage will be
small. The main
challenge will be
ensuring we can

continue testing and
gain more
confidence.
Factors Decreasing
risk: we currently
have an algorithm
from the previous
team. We should look
into its viability as a
point of comparison
for anything we do in
the future. Mitigation:
expansive testing on
real student data. We
would want to
identify if our
algorithm maximized
the valid matching.
This task is not able
to be eliminated
This task can not be
replicated by an off
the shelf component.
We can take some
inspiration from
algorithms that utilize
similar techniques.

user type from
outside the
application

Factors
decreasing risk:
should be
straightforward given
we get good data.
Navigation works
manually.
Task can’t be
eliminated
A very similar
function can be
found to assist us.

handle the large
number data and
clients at the same
time

2.6 Personnel Effort Requirements
Task Description Estimated Work Time (hours)

Research Algorithm 20

Run matching algorithm on testing data 7

Test data input in front end 10

Demonstrate website navigation 4

Work on Database 15

2.7 Other Resource Requirements
The web-server will need to be hosted with sufficient resources to allow all of the students to
access it without crashing.

We may also need testing servers made available. These servers wouldn’t require as high
resource requirements.

Testing data could help us to verify and improve the algorithm.
3 Does Not Exist

4 Design
4.1 Design Content
Our project mostly consists of improvements and additions to the past iterations of the Project
Matching system. We are expected to further the development of the React frontend, put
together a well-structured database, and improve the reliability of the matching algorithm.

4.2 Design Complexity
Multiple components/Subsystems: This project involves the development of a web-based
system that requires the integration of various technologies and principles
Scientific, mathematical, and engineering principles:

● Matching algorithm: The development of a matching algorithm involves mathematical
and algorithmic principles. Designing a new algorithm and analyzing its performance
requires a deep understanding of algorithms and data structures. Our algorithm will also
have to account for student and project sponsor preferences/skills.

● Database Management: Configuring and improving the current database involves
principles of database design, data normalization, and query optimization. It also
requires knowledge of database management like MariaDB.

● Frontend Development: Implementation of a web-hosted system frontend requires
expertise in web technologies like React and UI design.

● Software Architecture: Designing a suitable client-server software architecture involves
many software engineering principles and architectural patterns while maintaining
performance and scalability

Challenging Requirements: Our project scope addresses many complex requirements like
matching 95% of students with one of their top projects. This challenges our optimization of an
algorithm that is much more complex than previous iterations now accounting for preferences
and imbalance in project preferences. The focus on a diversity of skill sets and project
complexity aligns with industry standards.

4.3 Modern Engineering Tools
Because our project is extremely software-oriented, our work is done with programming utilities,
languages and frameworks for web, database and backend design.

Version control: We used GitLab to monitor and maintain updates to our codebase, as well as
track issues and tasks among team members.

Programming IDEs: We used development applications to write, test and debug the software.

Database management: We used database management systems and query languages to
preserve and manage user identities, roles, project preferences, and other attributes.

4.4 Design Content
Area Description Examples
Public health,
safety, and
welfare

We aim to enhance the
student experience by
ensuring everyone gets a
desirable project. The
efficiency of a single web
application will also benefit
faculty and advisors.

Our design will directly affect the well-being of
the students by better matching them to a
desired project. Faculty/advisors will also
benefit from an improved web application to
streamline the process. This will reduce the
stress on both students and faculty by having
a single application for the senior design
class.

Global,
cultural, and
social

Our matching system will
help clients build teams
with diverse backgrounds
from varying majors.

Our project we will assemble teams
comprising individuals from various
professional backgrounds, including software,
electrical, cyber, and computer engineering
majors

Environmental The simplification of the
project matching process
to one service will require
less resources.

This application will reduce any physical paper
involved in the process of matching students
to projects. Because it is a software
application, we will make the system as
efficient as possible

Economic Using one platform will also
allow for better efficiency in
terms of time spent
manually assigning
projects.

This application will be cost effective as the
only cost will be in the hosting of the
application. Course administrators will spend
less time on this process of the class saving
man hours for the university.

4.5 Prior Work/Solutions
Advantages to our new design:

● Matching algorithm: Our new algorithm will now account for students preferences/skills
when matching them to a project. This added complexity will better match students with
a project they will be more successful in. We also plan on optimizing the current
algorithm to account for an imbalance in the project preferences. This will make sure
projects that are popular amongst students can possibly have two iterations.

● Database Management: Optimizing the existing database design will eliminate unused
tables. This new design will be more readable which will allow course administrators to
modify the database in the future.

● Frontend Development: Our new frontend will include new features outlined in our
project plan. We will also fix issues noted in the previous iteration of this project.

Shortcomings to our new design:
● A lack of experience with developing project matching algorithms might pose potential

risk

● Integration between the update backend and the pre existing front end code might cause
a potential risk to our design

4.6 Design Decisions
Three Design Decisions we’ve made or will need to make during the design process:

● Continuing to utilize React on the frontend: React's modular approach simplifies UI
development, making it particularly well-suited for creating a complex interface with
reusable components. Its virtual DOM will ensure responsive rendering, which is crucial
for the project's performance requirements. React's abundant community support and
state management options further streamline development.

● Choice of matching algorithm: We will need to decide on the specific matching
algorithm to be used for the project. This decision involves selecting or developing an
algorithm that can efficiently match students to projects while considering factors such
as student preferences, project requirements, and diversity in team composition. The
choice of the algorithm will significantly impact the project's success in meeting the 95%
matching goal.

● Authentication: We will need to decide how authentication of the application will work.
We’ll need to design a system for user authentication and authorization, deciding on the
method of user login (e.g., email, or single sign-on) and access control to various system
features based on user roles.

4.7 Proposed Design
After getting familiar with the existing codebase and design decisions, we have:

● Tested instances of the frontend and backend designs.
● Designed new ER diagrams for the database.
● Tested modifications to React components to improve styling and reduce logical

redundancy.
● Tried handling Laravel requests to return pages according to path.

4.7.1 Design 0 (Initial Design)

In a real world context, the design would be intended to operate by being used on individual
devices which will access the website hosted on an ISU server.

Currently neither the functional nor non-functional requirements are fully met in the design’s
current state. This will be something to continue working on. Currently most of the frontend
functional requirements are met but almost none of the backend functional requirements are
met. Some of the non-functional requirements are met for the algorithm.

4.7.2 Design 1 (Design Iteration)
Replacement for the previous team’s database design:

Second iteration:

4.8 Technology Considerations
Some of the strengths and weaknesses of the technology that we chose are seen in our choice
of going with React. One of the issues that it has is a lack of standardization when putting apps
together. This is because React used to focus on using classes as its main way of creating
components, where now it is encouraged to use functions instead. An alternative we could have
used is Angular, but this would require starting over on the project and scrapping the previous
team's work.

Another design solution would be our choice to use Laravel. Laravel provides a backend service
without the need for a lot of dependencies, the issue with it is that it uses PHP as its language,
which is not very syntax friendly. An alternative that we could have used was the Java Spring
framework which has a very robust set of dependencies and derived frameworks (Spring Boot,
Quarkus, etc.). However it was requested that we use laravel instead.

One consideration is the desired complexity of the matching algorithm. This is a field with many
possibilities. The more complex we go, the more time testing we will need to ensure that the
algorithm is working as intended. But there is also the possibility the algorithm will provide
better matches. This is something that will require research to handle.

4.9 Design Analysis
Our proposed design from section 4.7 did not work. We were instructed to focus on the frontend
and not worry about the backend, leading us to no longer have a heavy focus on it. As for the
frontend. The design so far has worked well.Because it is still in design due to its size, we can
not say for certain that it is successful.

5 Testing
5.1 Unit Testing
In our project there will be a lot of units that will need to be tested, most of this unit testing will
need to occur in the backend. The tools used for this would be PHPUnit and Mockery These
units will include:

● Response codes for the controllers.
● Data verification for models and controller services.
● Exception verification.

For the algorithm, we will write unit tests to verify the correctness of individual components or
methods in our algorithm. We will use JUnit to automate the testing process. Each test will
cover different scenarios and edge cases.

5.2 Interface Testing
For the frontend, we’ll write tests to verify behavior. For instance, for tables with sorting
functionality, we want to ensure that the tables are properly being sorted. The test will click on
the sort button, then going through the columns and checking if it’s sorted correctly. For Next,
Back, and Submit buttons, we want to ensure that the buttons are working correctly. We will also
write tests for the nav bar menu items to ensure redirection is correctly working.

Jest snapshot testing is a technique used in JavaScript and React testing. It involves capturing
the output (such as rendered components or data structures) during the initial test run and
saving it in a snapshot file. Subsequent test runs then compare the current output with the
saved snapshot. If there are differences, the test fails, indicating potential unintended changes.
Developers can review and either accept the changes by updating the snapshot or identify and
fix issues if there's a bug. Snapshot testing helps ensure the stability of visual representations in
your codebase.

Since we have a different dashboard for each user type, we can utilize snapshot testing for each
dashboard. We can set the user type before each test and check if components are present. For
instance, the Client dashboard will have a proposals section, whereas the Student dashboard
won’t.

5.3 Integration Testing
For the backend of this project there really is not much of a need for integration tests as the
current plan will only use a single backend service. In the event this changes then they will be
needed. The tool that would be used for this would be the laravel foundation testing tool.

For the algorithm, integration testing with the database is necessary to ensure that data is
retrieved and stored correctly into our data structures we created. We will accomplish this by

using test data in the database and verifying it matches the correct functionality in our algorithm
code. Integration testing the end points for the backend and the algorithm must be tested well.

5.4 System Testing
For the backend the closest thing to this would be the response code tests covered under unit
testing; either the incoming request from the starting point worked or it didn't.

For system testing, our focus will be on validating that all components operate according to
expectations. This entails ongoing testing using simulated or previous semester data. We will
systematically conduct tests and address any identified issues until all functionalities operate.
Multiple tests, employing test data, will be carried out across the algorithm, frontend, backend,
and database.

5.5 Regression Testing
For the backend, this would be covered by the unit tests. If changes are made and a certain
functionality stops working, then the test for that function will fail and since the unit tests are
written in accordance with the requirements that would mean a requirement is not met.

Regression for the algorithm will include running unit tests, integration tests, and performance
tests to verify new changes to the algorithm don’t break old functionality and still perform as
desired. Regression results will allow us to compare progress from previous iterations as well as
ensure the algorithm is still functional. Our requirements contain many edge cases that will
need to be continuously tested.

5.6 Acceptance Testing
Towards the end of development, we will do end-user testing to validate our project meets the
expectations and requirements. We will allow users to interact with the system and provide
feedback. We will also perform functional requirements testing to verify the system fulfills the
pre-defined functional requirements we listed above. The data received from these tests will be
analyzed and allow for the team to make adjustments to meet client expectations and
requirements.
5.7 Security Testing
5.8 Results

6 Implementation
The plan for next semester will be to get the backend up and running so that we can start
submitting data to it. With this we will be able to create a more realistic test environment for the
algorithm by actually submitting data the way a user would. Some other things that will need to
be done are the instructor and advisor pages on the frontend, the pages are currently there but
will need some polishing. We also intend on modifying the algorithm after finding the best way
to optimize project matching.

7 Professionalism
7.1 Areas of Responsibility
Area of Responsibility NPSE Canon IEEE

Work Competence Perform services only in
areas of their competence;
Avoid deceptive acts

IEEE Code #6: Improve and
maintain skills to complete
tasks for others if qualified
by training or experience.

Both of these codes
emphasize the importance
of maintaining and
improving technical skills.
How competence is defined
and maintained may differ
between IEEE and NPSE
Canon

FInancial Responsibility Act for each employer of
client as faithful agents or
trustees

IEEE Code #4: to avoid
unlawful conduct in
professional activities, and
to reject bribery in all its
forms;

This code mentions
rejecting bribery as a
financial responsibility as an
engineer. The NPSE canon
has no mention of bribery.

Communication Honesty Issue public statements
only in an objective and
truthful manner

IEEE Code 5: to seek,
accept, and offer honest
criticism of technical work,
to acknowledge and correct
errors, to be honest, and
realistic in stating claims or
estimates based on
available data, and to credit
properly the contributions of
others

This code stresses the
importance of honest
communication,
acknowledgement of eros,

and truthful reporting. The
emphasis on
communication varies
between the two codes

Health, Safety, Well-Being Hold paramount the safety,
health, and welfare of the
public

IEEE Code 1: to hold
paramount, the safety,
health, and welfare of the
public, to strive to comply
with ethical design and
sustainable development
practices, to protect the
privacy of others, and to
disclose promptly factors
that might endanger the
public or the environment;

This code prioritizes the
safety, health, and welfare of
the public. The IEEE code
goes further into depth on
protecting privacy of others
or anything that can harm
the public specifically

Property Ownership Act for each employer or
client as faithful agents or
trustees

IEEE Code 3: to avoid real or
perceived conflicts of
interest whenever possible,
and to disclose them to
affected parties when they
do exist

This code advocates for
respect, ideas, and
information in relation to
conflict of interest.

Sustainability IEEE Code 10: to support
colleagues and coworkers in
following this code of
ethics, to strive to ensure
the code is upheld, and to
not retaliate against
individuals reporting a
violation.

This code aligns with
sustainability, because it
highlights the importance of
upholding the code of ethics
to ensure a sustainable
project.

Social Responsibility Conduct themselves
honorably, responsibly,
ethically, and lawfully so as
to enhance the honor,
reputation, and usefulness
of the profession

IEEE Code #7: to treat all
persons fairly and with
respect, and to not engage
in discrimination based on
characteristics such as race,
religion, gender, disability,
age, national origin, sexual
orientation, gender identity,
or gender expression

This code highlights the
importance of treat all
people with respect and
fairness. This differs from
the NPSE canon, because it
is focused less on the
reputation fo the profession
and more how people
should be treated.

7.2 Project Specific Professional Responsibility Areas
Area of Responsibility How it relates to our project

Work Competence It's important for us to have working
knowledge of the tools we use to build the
software. Working on a system like this
without the necessary technical skills could
be harmful to users.

FInancial Responsibility It will be important to use hosting/computing
resources responsibly when deploying our
new system.

Communication Honesty We should be as transparent and
communicative as possible when it comes to
the behavior and design choices of the
matching system.

Health, Safety, Well-Being To protect the safety and well-being of all
users, it will be important to protect the
information provided by students, clients and
advisors alike.

Property Ownership We must respect the privacy of the
information that is used in our matching
system, and report any conflict of interest.

Sustainability We must respect and report instances of
security, privacy or safety violations.

Social Responsibility The system must operate without unfair bias
or discrimination.

7.3 Most Applicable Professional Responsibility Area
Health, Safety, and Well-Being will likely be the most applicable concern when building and
maintaining the matching system. We must consider the necessary security measures to
protect the information provided and ensure data is in the hands of the correct users.

8 Closing Material
8.1 Discussion
Our project was successful mostly in terms of planning and a little bit in terms of execution. We
were able to outline our goals and tasks required to achieve these goals. Regarding the frontend,
we made some progress in terms of cleanliness and alignment. We tried to improve the design
by implementing the original wireframes. About half-way through the semester, we decided to
forgo any backend improvements. The backend will need to be addressed to bring the project
together and make it production ready.

8.2 Conclusion
For the algorithm, we have implemented and tested a simple bidding algorithm utilizing some of
the resources from previous semester teams. We adjusted the algorithm to be optimized based
on student preferences. In our initial testing efforts, we have found this type of algorithm to be
successful based on the criteria we set early in the design phase. We received data from
previous semesters to conduct testing, and found that the algorithm currently matched students
better than manually project matching. Our goal for next semester is making changes to the
algorithm to best match students to a project.

8.2.1 Team Contract
Team Members:
1) Noah Nelson 2) Joshua Izumba
3) Devin Tigges 4) Evan Brummer
5) Max Kueller 6) Robert Holeman

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
- 11:30 on Wednesdays, in person with TA.
- 6:30 on Tuesdays via Discord.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

- Discord.
- E-mail.

3. Decision-making policy (e.g., consensus, majority vote):
- Majority vote of project members.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes
be shared/archived):

 Record Keeping

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
- Project members are expected to be in attendance of all team meetings. If an

individual cannot attend or will be late to a specific meeting, a notice of 24 hours
is required, except in the case of an emergency.

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:

- Designated tasks should be completed or ready for review before or on the
deadline (preferably before).

3. Expected level of communication with other team members:
- Project members should be in frequent, consistent communication. This is

expected, at the very least, when a project member both starts or completes a
specific task.

4. Expected level of commitment to team decisions and tasks:
- All project members should provide input when discussing a decision and

assigning tasks.

https://docs.google.com/spreadsheets/d/1hqodDLEBFAJwGGqIjxNUJ-N3DlZ8iBNrdGWBqprwN3s/edit

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

- Noah: Database Lead
- Devin: Team Organization
- Max: Client Interaction, Testing Lead
- Joshua: Testing, Quality Assurance
- Evan: UI/UX Lead
- Robert: Architecture design

2. Strategies for supporting and guiding the work of all team members:
- Ask for help when needed.
- Ask if other team members need help with their current tasks.
- All team members should be familiar with all aspects of the project.
- Setting the standard for your role. Making sure your work is a good example for

other team members.
3. Strategies for recognizing the contributions of all team members:

- Documenting code authors.
- Ensuring all tasks are listed in Gitlab with the appropriate authors.
- Recognizing quality contributions during standup meetings.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

- Noah: Industry backend experience (Springboot, Quarkus, microsoft sql server),
SQL, React, linux

- Devin: Industry experience in quality assurance (Selenium, Junit), UI/UX design
(AdobeXD), embedded display development (C++, Qt, Linux), and team leadership
through internships and class projects.

- Max: Writing and communication experience (internship, Student Government,
testing (Game development projects, did extensive testing for my internship,
Junit)

- Joshua: Backend and Frontend intern experience at Snapchat. Professional
experience in React, TypeScript, Java, GraphQL, Bazel, Protobuf, and gRPC.
Experience writing and presenting professional frontend and backend design
docs, extensive testing, and creating sequence diagrams.

- Evan: Professional experience in web/mobile development and UI remote
configuration.

- Robert: Full stack web development using React for front-end, Java/Kotlin for
backend

2. Strategies for encouraging and support contributions and ideas from all team
members:

- During team meetings, all team members will have a dedicated speaking time to
share what they have been working on, or any other information they deem
necessary to share.

- Document to put ideas when not in a meeting to later be discussed

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will
a team member inform the team that the team environment is obstructing their
opportunity or ability to contribute?)

- Conflict with a specific individual(s):
- If a team member has a conflict with a specific individual(s) on the team, the

dispute should be handled between themselves.

